Currently set to Index
Currently set to Follow

Температура плавления меди – при какой температуре плавится медь

Содержание
  1. Медь и ее сплавы
  2. Температура плавления меди
  3. Купрум: характеристика элемента
  4. Физические свойства
  5. Нахождение в природе
  6. Медные сплавы
  7. Химический состав меди
  8. Латунь
  9. Бронза
  10. Как получают медь
  11. Технологический процесс производства меди
  12. Способы плавления меди
  13. Муфельная печь
  14. Газовая горелка
  15. Паяльная лампа
  16. Горн
  17. Микроволновая печь
  18. График плавления меди
  19. Температура кипения
  20. Как расплавить медь в домашних условиях?
  21. Оборудование и правила техники безопасности
  22. Алгоритм расплавления медных изделий
  23. Сплавы меди
  24. Бронза
  25. Латунь
  26. Соединения меди
  27. Соединения
  28. Особенности плавления некоторых металлов
  29. Как расплавить латунь?
  30. Инструкция по плавке материала
  31. Плавление сплавов на основе меди
  32. Советы к инструкции по плавлению меди
  33. На заметку
  34. Плавка меди в домашних условиях
  35. При какой температуре плавится медь
  36. Плавление в домашних условиях
  37. Как расплавить в домашних условиях
  38. Значение плотности меди
  39. Расчет удельного веса
  40. Расчет веса с использованием значений удельного веса
  41. Нахождение в природе
  42. Допустимая температура нагрева кабеля
  43. Допустимая температура нагрева изоляции кабеля
  44. Допустимая температура нагрева изоляции жил кабеля
  45. Что изменилось со временем
  46. Применение медного литья
  47. Как определяется плотность

Медь и ее сплавы

Металл имеет красновато-желтый оттенок благодаря оксидной пленке, которая образуется при первом взаимодействии металла с кислородом. Пленка придает благородный вид и обладает антикоррозийными свойствами.

Сейчас доступно несколько способов добычи металла. Распространёнными являются медный колчедан и блеск, которые встречаются в виде сульфидных руд. Каждая из технологий получения меди требует особого подхода и следования процессу.

Добыча в природных условиях происходит в виде поиска медных сланцев и самородков. Объемные месторождения в виде осадочных пород находятся в Чили, а медные песчаники и сланцы расположились на территории Казахстана. Использование металла обусловлено невысокой температурой плавления. Практически все металлы плавятся путем разрушения кристаллической решетки.

Основной порядок плавления и свойства:

  • на температурных порогах от 20 до 100° материал полностью сохраняет свои свойства и внешний вид, верхний оксидный слой остается на месте;
  • кристаллическая решетка распадается на отметке 1082°, физическое состояние становится жидким, а цвет белым. Уровень температуры задерживается на некоторое время, а затем продолжает рост;
  • температура кипения меди начинается на отметке 2595°, выделяется углерод, происходит характерное бурление;
  • при отключении источника тепла происходит снижение температуры, происходит переход в твердую стадию.

Плавка меди возможна в домашних условиях, при соблюдении определенных условий. Этапы и сложность задачи зависят от выбора оборудования.

Температура плавления меди

Плавится материал при определенной температуре, которая зависит от наличия и количества сплавов в составе.

В большинстве случаев, процесс происходит при температуре от 1085°. Наличие олова в сплаве дает разбег, плавление меди может начаться при 950°. Цинк в составе также понижает нижнюю границу до 900°.

Для точных расчетов времени понадобится график плавления меди. На обычном листке бумаги используется график, где по горизонтали отмечается время, а по вертикали градусы. График должен указывать, на каких моментах поддерживается температура при нагреве для полного процесса кристаллизации.

Печь для плавки меди

Купрум: характеристика элемента


Научное наименование меди Cuprum (Купрум) происходит от названия греческого острова Кипр, где медь начали добывать ещё в середине третьего тысячелетия до нашей эры. В периодической таблице Менделеева химический элемент медь имеет 29 атомный (порядковый) номер, находится в 11 группе четвёртого периода. Принадлежит к пластичным переходным металлам. В чистом виде имеет характерный золотисто-розовый цвет. Чистую медь легко окислить, поэтому в естественных условиях она всегда образует на своей поверхности тонкую оксидную плёнку, которая придаёт ей красноватый оттенок.

Физические свойства

Это второй металл после серебра по уровню электропроводности, что делает её крайне востребованной в современной электронике. Второе ценное качество — высокая теплопроводность, это позволяет её широко применять во всевозможных теплообменниках и в холодильной аппаратуре.

  • Температура плавления 1083 градуса.
  • Температура кипения 2567 градусов.
  • Удельное сопротивление при 20 градусах составляет 1,68·10 -3 Ом·м.
  • Плотность 8,92 г/см.

Нахождение в природе

В природе встречается в самородном виде и в виде соединений.

Самые крупные месторождения самородной меди находятся в США в районе озера Верхнего. Именно в этом районе был найден самый крупный медный самородок весом 3560 килограмм. А также много самородной меди встречается в рудных горах Германии.

В России и на постсоветском пространстве добыча меди происходит путём извлечения из сульфидной руды. Её можно добыть, извлекая из медного колчедана или халькопирита CuFeS2. Наиболее известны такие месторождения, как Удокан в Забайкалье и Джезказган в Казахстане.

Сульфиты меди чаще всего образуются в так называемых среднетемпературных гидротермальных жилах. Могут образовываться и в осадочных породах в виде медистых песчаников и сланцев.

Как правило, медная руда всегда добывается открытым способом. Процентное содержание чистой меди в руде составляет от 0,2 до 1,0 процента в зависимости от месторождения.

Медные сплавы

Являются самыми первыми металлическими сплавами, получение которых человечество освоило ещё на самой заре своего развития. При какой температуре плавится медь, зависит от того, в каком сплаве она находится. В настоящее время наиболее известны и востребованы такие сплавы, как:

  • Латунь. Сплав с добавление цинка, содержание которого может доходить до 40%. Цинк повышает пластичность и прочность металла. Температура, при которой латунь плавится, составляет 880 — 950 градусов.
  • Бронза. Сплав с оловом, с добавлением некоторых других компонентов, таких как кремний, бериллий, свинец. Получать бронзу из меди человек научился ещё в самом начале бронзового века. Бронза не утратила своей актуальности даже с наступлением века железа, например, ещё в начале 20 века стволы пушек изготавливали из так называемой орудийной бронзы. Температура, при которой бронза начинает плавиться, составляет 930 — 1140 градусов.
  • Мельхиор. Кроме меди, содержит в своём составе 5−30% никеля. Никель увеличивает прочность медного сплава и повышает его электрическое сопротивление. Кроме того, сильно повышается коррозионная стойкость. Температура плавления — 1170 градусов. По своим внешним характеристикам мельхиор очень похож на серебро, раньше его называли белой медью. Но он обладает более высокой механической прочностью, чем обычное серебро.
  • Дюраль, или дюралюминий. Основную массу сплава составляет алюминий 93%, на медь приходится 5%, оставшиеся 2% занимают марганец, железо и магний. Название происходит от названия немецкого города Дюрен, где в 1906 году был впервые получен этот высокопрочный сплав алюминия. Одной из его особенностей является тот факт, что его прочностные характеристики с течением времени имеют тенденцию к увеличению. Поэтому он не теряет своей прочности после нескольких лет эксплуатации, как другие металлы. В настоящее время этот сплав является основой самолётостроения.
  • Ювелирные сплавы. Сплавы меди с золотом. Тем самым увеличивается устойчивость драгметалла к механическим воздействиям и истиранию.

Химический состав меди

В природе она не однородна по своему составу, так как содержит ряд кристаллических элементов, образующих с ней устойчивую структуру, так называемые растворы, которые можно подразделить на три группы:

  1. Твердые растворы. Образуются, если в составе содержаться примеси железа, цинка, сурьмы, олова, никеля и многих других веществ. Такие вхождения существенно снижают ее электрическую и тепловую проводимость. Они усложняют горячий вид обработки под давлением.
  2. Примеси, растворяющиеся в медной решетке. К ним относятся висмут, свинец и другие компоненты. Не ухудшают качества электропроводимости, но затрудняют обработку под давлением.
  3. Примеси, формирующие хрупкие химические соединения. Сюда входят кислород и сера, а также другие элементы. Они ухудшают прочностные качества, в том числе снижают электропроводность.

Масса меди с примесями гораздо больше, чем в чистом виде. Ко всему прочему, элементы примесей существенно влияют на конечные характеристики уже готового продукта. Поэтому их суммарный состав, в том числе количественный, по отдельности должен регулироваться еще на этапе производства. Рассмотрим более подробно влияние каждого элемента на характеристики конечных медных изделий.

  1. Кислород. Один из самых нежелательных элементов для любого материала, не только медного. С его ростом ухудшается такое качество, как пластичность и устойчивость к коррозионным процессам. Его содержание не должно превышать 0,008%. В ходе термической обработки в результате процессов окисления количественное содержание этого элемента уменьшается.
  2. Никель. Образует устойчивый раствор и существенно снижает показатели проводимости.
  3. Сера или селен. Оба компонента одинаково влияют на качество готовой продукции. Высокая концентрация таких вхождений снижает пластичные свойства медных изделий. Содержание таких компонентов не должно превышать 0,001% от общей массы.
  4. Висмут. Негативно влияет на механические и технологические характеристики готовой продукции. Максимальное содержание не должно превышать 0,001%.
  5. Мышьяк. Он не меняет свойств, но образует устойчивый раствор, является своего рода защитником от пагубного влияния других элементов, как кислород, сурьма или висмут.
Химический состав меди.
  1. Марганец. Он способен полностью раствориться в меди практически при комнатной температуре. Влияет на проводимость тока.
  2. Сурьма. Компонент лучше всех растворятся в меди, наносит ей минимальный вред. Содержание его не должно превышать 0,05% от массы меди.
  3. Олово. Образует устойчивый раствор с медью и повышает ее свойства по проведению тепла.
  4. Цинк. Его содержание всегда минимально, поэтому такого пагубного влияния он не оказывает.

Фосфор. Основной раскислитель меди, максимальное содержание которого при температуре 714°С составляет 1,7%.

Латунь

Латунь

Сплав на основе меди с добавлением цинка называется латунь. В некоторых ситуациях добавляется олово в меньших пропорциях. Джеймс Эмерсон в 1781 году решил запатентовать комбинацию. Содержание цинка в сплаве может варьироваться от 5 до 45%. Латуни различают в зависимости от предназначения и спецификации:

  • простые, состоящие из двух компонентов – меди и цинка. Маркировка таких сплавов обозначается буквой «Л», напрямую значащая содержание меди в сплаве в процентах;
  • многокомпонентные латуни – содержат множество других металлов в зависимости от назначения к использованию. Такие сплавы повышают эксплуатационные свойства изделий, обозначаются также буквой «Л», но с прибавлением цифр.

Физические свойства латуни относительно высокие, коррозийная стойкость на среднем уровне. Большинство сплавов не критично к пониженным температурам, возможно эксплуатировать металл в различных условиях. Технологии получения латуни взаимодействует с процессами медной и цинковой промышленности, обработке вторичного сырья. Эффективным способом плавки является использование электропечи индукционного типа с магнитным отводом и регулировкой температуры. После получения однородной массы, она разливается в формы и подвергается процессам деформации.

Плавка латуни

Применение материала в различных отраслях, повышает на него спрос с каждым годом. Сплав применяется в суд строительстве и производстве боеприпасов, различных втулок, переходников, болтов, гаек и сантехнических материалов.

Бронза

Бронза

Цветной металл для изготовки изделий разных типов начали использовать с древних времен. Данный факт подтверждается найденными материалами при археологических раскопках. Состав бронзы изначально был богат оловом.

Промышленностью выпускается различное количество разновидностей бронзы. Опытный мастер способен по цвету металла определить его предназначение. Однако не каждому под силу определить точную марку бронзы, для этого используется маркировка. Способы производства бронзы подразделяются на литейные, когда происходит плавление и отлив и деформируемые.

Состав металла зависит от предназначения к использованию. Основным показателем является наличие бериллия. Повышенная концентрация элемента в сплаве, подвергнутая процедуре закаливания, может соперничать с высокопрочными сталями. Наличие в составе олова отнимает у металла гибкость и пластичность.

Производство бронзовых сплавов изменилось с древних времен фактически внедрением современного оборудования. Технология с использованием в качестве флюса в виде древесного угля используется до сих пор. Последовательность получения бронзы:

  • печь разогревается для требуемой температуры, после этого в нее устанавливается тигель;
  • после плавки металл может окислится, во избежание этого добавляют флюс в качестве древесного угля;
  • кислотным катализатором служит фосфорная медь, добавление происходит после полного прогрева сплава.
Плавка бронзы

Старинные изделия из бронзы подвержены естественным процессам – патинирование. Зеленоватый цвет с белым оттенком проявляется из-за образования пленки, обволакивающей изделие. Искусственные методы патинирования включают в себя методы с использованием серы и параллельным нагреванием до определенной температуры.

Как получают медь

Запасы этого металла на Земле сравнительно невелики (по сравнению с другими элементами). Причем встречается он как в виде самородков, так и в составе сложных соединений.

Чаще всего это медный колчедан, халькопирит, борнит и халькозин. Находят их в осадочных породах, но чаще всего – в гидротермальных жилах.

Общее количество месторождений меди в мире довольно велико, однако действительно крупных, имеющих важное стратегическое значение, всего несколько.

Это интересно! Содержание меди в руде очень невелико – 0,3–1%, в зависимости от конкретного месторождения.

На территории России это Удокан, расположенный в Забайкальском крае. Если рассматривать Европу, то крупнейшим месторождением является немецкий Мансфельд. В ближнем зарубежье такими запасами может похвастать Казахстан – они есть в городе Жезказган.

Серьезный медоносный пояс расположен в Центральной Африке. В США также имеется крупное месторождение – Моренси. Наконец, Чили может похвастать сразу двумя серьезными точками добычи – Кольяуси и Эскондида.

Добывается медная руда открытым методом. Лишь сравнительно малая часть месторождений, где сырье залегает на большой глубине, использует шахтный метод.

После добычи руда проходит сложнейшую обработку, позволяющую отделить чистый металл от шлака. Для этого применяются разные методы: электролиз, гидрометаллургия, а также пирометаллургия.

Технологический процесс производства меди

Медь, относимая по классификации к цветным металлам, стала известной в глубокой древности. Ее производство человек освоил раньше, чем железо.

Это объяснимо как частым ее нахождением на земной поверхности в доступном состоянии, так и относительной легкостью производства меди путем извлечения ее из соединений.

Свое название Cu она получила от острова Кипра, где древняя технология производства меди получила большое распространение.

Благодаря своей высокой электропроводимости (медь из всех металлов – вторая после серебра) она считается особенно ценным электротехническим материалом. Хотя электропровод, на который ранее шло до 50% мирового производства меди, сегодня чаще всего изготовляют из более доступного алюминия.

Медь, наряду с большинством прочих цветных металлов, считается все более дефицитным материалом. Это связано с тем, что сегодня называются богатыми те руды, что содержат около 5% меди, а основная ее добыча ведется переработкой 0,5%-ных руд.

В то время как в прошлые века эти руды содержали от 6 до 9% Cu.

Медь относят к тугоплавким металлам. При плотности в 8,98 г/см3 ее температуры плавления и кипения составляют соответственно 1083°C и 2595°C.

В соединениях она обычно присутствует с валентностью I или II, реже встречаются соединения с трехвалентной медью.

Соли одновалентной меди чуть окрашенные или совсем без цвета, а двухвалентная медь дает своим солям в водном растворе характерную окрашенность.

Чистая медь представляет собой тягучий металл красноватого или розового (на изломе) цвета. В просвете тонкогом слоя она может казаться зеленоватой или голубой. Большинство соединений меди имеют такие же цвета. Этот металл присутствует в составе множества минералов, из них при производстве меди в России применяют только 17.

Самое большое место в этом отводится сульфидам, самородной меди, сульфосолям и карбонатам (силикатам).

В сырье заводов по производству меди помимо руд входят еще медные сплавы из отходов. Чаще всего они включают от 1 до 6% меди в соединениях серы: халькозине и халькопирите, ковелине, гидрокарбонатах и оксидах, медном колчедане.

Также руды, наряду с пустой породой, включающей карбонаты кальция, магния, силикатов, пирит и кварц, могут содержать компоненты таких элементов, как: золото, олово, никель, цинк, серебро, кремний и др.

Не считая самородных руд, включающих медь в доступном виде, все руды подразделяются на сульфидные или окисленные, а также смешанные. Первые получаются как результат реакций окисления, а вторые считаются первичными.

Способы плавления меди

Плавка меди дома и на производстве проходит одинаково.

Процесс изменения состояния осуществляется под влиянием повышения температуры.

При достаточном количестве тепла металлическая структура предмета разрушается. Добиться такого эффекта можно несколькими способами.

Муфельная печь

Лабораторный муфель – самое удобное устройство для расплавления металла.

Несколько советов, как расплавить медный сплав в лабораторных условиях:

  • у муфельной печи есть ручка температурного регулятора, ее нужно поставить на отметку, незначительно превышающую температуру расплавления сплава;
  • графитовый или керамический тигель перед загрузкой шихты хорошо прогревают;
  • после отливки с горячего тигля проволочным крюком снимают окалину.

Литье в муфеле прогревается равномерно, плавильщик изолирован от летучих вредных компонентов, Через огнеупорное стекло дверцы удобно наблюдать за ходом расплавления меди.

Газовая горелка

Плавка меди в небольших объемах осуществляется ручной газовой горелкой. Мощность портативного устройства большого значения не имеет. Горелку располагают под тиглем, в котором будут плавить медный лом, направляют пламя на донце, языки должны охватывать его полностью. Процесс трудоемкий, длительный. Для защиты от кислорода цветной лом присыпают угольной крошкой.

Плавят медь в домашних условиях, используя тигельную печь или горн. Он представляет собой ограниченное пространство, куда на подставке помещается тигель. Снизу поджигаются угли или подводится горелка. Необходимо организовать воздухоподдув, чтобы повысить температуру горения топлива. Для ускорения процесса расплавления сверху горн прикрывают плотной крышкой. Хорошо раскаленный древесный уголь разогревают, засыпают в тигель с ломом. Метод используют специалисты, часто занимающиеся литьем в небольших объемах.

Паяльная лампа

Сплав с цинком, оловом плавится при невысокой температуре. В качестве источника энергии для расплавления используют обычную паяльную лампу, ее располагают вертикально под тиглем так, чтобы пламя охватывало поверхность дна и нижнюю часть боковой стенки. Для снижения объема окалины лом присыпают древесным углем. Процесс окисления при расплавлении под слоем угольной крошки будет протекать не так интенсивно.

Горн

Плавят медь в домашних условиях, используя тигельную печь или горн. Он представляет собой ограниченное пространство, куда на подставке помещается тигель. Снизу поджигаются угли или подводится горелка.

Необходимо организовать воздухоподдув, чтобы повысить температуру горения топлива. Для ускорения процесса расплавления сверху горн прикрывают плотной крышкой. Хорошо раскаленный древесный уголь разогревают, засыпают в тигель с ломом.

Метод используют специалисты, часто занимающиеся литьем в небольших объемах.

Микроволновая печь

Плавить медь в домашних условиях можно в микроволновке, из нее достают поворотный механизм. Под размер тигля делают огнеупорный контейнер с крышкой из шамотного кирпича.

Сначала в течение 15 минут на максимальном режиме нагревают керамический тигель, он разогревается до желтоватого свечения.

Затем в него засыпают подготовленный лом, снова убирают шамотный контейнер в печь, плавить медный лом необходимо 20-30 минут на максимальном режиме, создается температура порядка +1200°С. Затем сплав выливают в заранее подготовленную изложницу или форму.

Для изготовления мелких деталей лучше выбирать многокомпонентные сплавы: латуни, бронзы, они не такие текучие, их проще плавить, не нужны слишком высокие температуры. Когда плавят медь в домашних условиях, соблюдают технику безопасности, предусматривают противопожарные меры.

Микроволновая печь

Плавить медь в домашних условиях можно в микроволновке, из нее достают поворотный механизм. Под размер тигля делают огнеупорный контейнер с крышкой из шамотного кирпича. Сначала в течение 15 минут на максимальном режиме нагревают керамический тигель, он разогревается до желтоватого свечения. Затем в него засыпают подготовленный лом, снова убирают шамотный контейнер в печь, плавить медный лом необходимо 20-30 минут на максимальном режиме, создается температура порядка +1200°С. Затем сплав выливают в заранее подготовленную изложницу или форму.

Для изготовления мелких деталей лучше выбирать многокомпонентные сплавы: латуни, бронзы, они не такие текучие, их проще плавить, не нужны слишком высокие температуры. Когда плавят медь в домашних условиях, соблюдают технику безопасности, предусматривают противопожарные меры.

График плавления меди

Расплавление любого металла заключается в том, что под воздействием высоких температур разрушается кристаллическая решётка и металл переходит из твёрдого состояния в жидкое. Можно выделить некоторые закономерности, свойственные любому металлу в процессе расплавления:

Как расплавить медь дома

  • Во время нагревания температура внутри металла повышается, но кристаллическая решётка не подвергается разрушению. Металл сохраняет своё твёрдое состояние.
  • При достижении температуры плавления, для меди это 1083 градуса, температура внутри металла перестаёт повышаться, несмотря на то что общий нагрев и передача тепла продолжаются.
  • После того как вся масса метала переходит в расплавленное состояние, температура внутри металла снова начинает резко повышаться.

В случае процесса охлаждения расплавленного металла происходит всё то же самое, но в обратной последовательности. Сначала происходит резкое снижение температуры внутри металла, затем на значении 1080 градусов падение температуры прекращается до тех пор, пока вся масса метала не перейдёт в твёрдое состояние. После этого температура снова начинает резко падать, пока не сравняется с температурой окружающего воздуха и кристаллизация не завершится окончательно.

Температура кипения

Медь начинает активно выделять углерод в виде пузырьков газа при температуре 2560 градусов. Внешне это очень напоминает кипение воды. На самом деле это процесс активного окисления меди, в результате которого металл теряет практически все свои уникальные свойства. Детали, отлитые из кипящей меди, имеют в своей структуре большое количество пор, которые будут уменьшать механическую прочность материала и ухудшать его декоративные свойства. Потому в процессе плавки необходимо внимательно следить за температурой и не допускать закипания меди.

Как расплавить медь в домашних условиях?

Обычно медь и сплавы на ее основе плавят в специальных печах, где происходит не только расплавление материала, но и формовка новых деталей. Однако при желании медные изделия можно расплавить и в домашних условиях. Температура плавления меди в домашних условиях будет стандартной — 1083 градусов. Опытные металлурги рекомендуют нагревать вещество с небольшим запасом, чтобы минимизировать теплопотери и не допустить повторной кристаллизации вещества при его охлаждении. Во время домашнего расплавления необходимо соблюдать правила техники безопасности. Ниже мы рассмотрим эти правила, а потом узнаем, как именно нужно проводить домашнюю расплавку медных изделий.

Оборудование и правила техники безопасности

Для расплавления Вам понадобится купить или собрать специальное оборудование. В качестве исходного вещества подойдет чистая медь в слитках или брусках. Также для переплавки можно использовать различные детали и домашнюю утварь, содержащие большое количество меди. Это могут быть декоративные изделия, запчасти авто, очищенные провода и другие. Перед переплавкой проверьте удельное содержание меди (обычно ставится штамп с нужной информацией). Для нагрева объектов понадобится муфельная печь с регулятором температуры.

Для расплавления слитков или изделий понадобится не только печь, но и посуда-тигель, в которую будет помещаться медь. При выборе тигля отдайте свое предпочтение посуде, выполненной из тугоплавкой керамики или огнеупорной глины. Эти материалы не трескаются и не деформируются при большой нагреве. Из керамики или огнеупорной глины Вам также нужно выполнить форму, в которую будет заливаться расплавленная медь. Помимо этого Вам понадобится и ряд вспомогательных элементов — металлургические щипцы и крюк для работы с тиглем, древесный уголь (если Вы используете обычную печь), бытовой пылесос для удаления мусора с металлургической площадки и так далее.

Также стоит не забывать о правилах техники безопасности:

  • Все работы рекомендуется проводить на улице либо в хорошо проветриваемом большом помещении с нормальным уровнем влажности воздуха. Это может быть гараж, пристройка к дому, мастерские.
  • Для металлургических работ человеку понадобится купить защитную одежду, которая будет защищать его тело от маленьких капель расплавленной меди и термического воздействия высоких температур. Защитная одежда должна покрывать не только туловище, но и руки, голову и ноги.
  • В случае утечки металла из активной зоны нужно выключить печь, чтобы остановить процедуру переплавки. «Сбежавший» металл необходимо потушить, однако учтите — вода для этих целей не подходит. В случае тушения раскаленного металла водой жидкость может начать распадаться на молекулы кислорода и водорода, что может спровоцировать взрыв (молекулярный водород чрезвычайно взрывоопасен). Для тушения расплавленного металла следует использовать асбестовое одеяло либо сухую кальцинированную соду или хлорид натрия.

медные сплавы

Алгоритм расплавления медных изделий

Переплавку медных изделий следует делать так:

  1. Возьмите медные изделия или слитки и поместите в тигель. Тигель с расходными материалами поместите в печь. Начните постепенно нагревать материал: сперва выставите температуру 100 градусов, потом — 200 и так далее. Доведите температуру до 1090-1150 градусов (медь плавится при температуре 1083 градусов, однако нужно брать температуру с небольшим запасом).
  2. Когда материал расплавится, достаньте его из печи с помощью металлургических щипцов. На поверхности смеси вы увидите остатки оксидной пленки. С помощью крюка ее нужно сдвинуть к одной из стенок тигля, чтобы она не попала в форму. После удаления пленки аккуратно перелейте расплавленную медь в форму (переливать жидкость нужно тонкой струей, чтобы не допустить утечку или распрыскивания металла).
  3. Выключите муфельную печь, накройте форму огнеупорной крышкой и дождитесь полного остывания формы вместе с расплавленным металлом. При желании Вы можете поставить форму обратно в печь, чтобы минимизировать контакт металла с атмосферным воздухом (однако перед помещением формы убедитесь, что печь выключена). После полного остывания и затвердения металла достаньте переплавленную запчасть из формы.При необходимости выполните финальную полировку или шлифовку.

плавка меди дома

Сплавы меди

Сплавы, повышающие прочность и другие свойства меди, получают введением в нее добавок, таких, как цинк, олово, кремний, свинец, алюминий, марганец, никель. На сплавы идет более 30% меди.

Латуни – сплавы меди с цинком ( меди от 60 до 90% и цинка от 40 до 10%) – прочнее меди и менее подвержены окислению. При присадке к латуни кремния и свинца повышаются ее антифрикционные качества, при присадке олова, алюминия, марганца и никеля возрастает антикоррозийная стойкость. Листы, литые изделия используются в машиностроении, особенно в химическом, в оптике и приборостроении, в производстве сеток для целлюлознобумажной промышленности.

Бронзы. Раньше бронзами называли сплавы меди (80-94%) и олова (20-6%). В настоящее время производят безоловянные бронзы, именуемые по главному вслед за медью компоненту.

  • Алюминиевые бронзы содержат 5-11% алюминия, обладают высокими механическими свойствами в сочетании с антикоррозийной стойкостью.
  • Свинцовые бронзы, содержащие 25-33% свинца, используют главным образом для изготовления подшипников, работающих при высоких давлениях и больших скоростях скольжения.
  • Кремниевые бронзы, содержащие 4-5% кремния, применяют как дешевые заменители оловянных бронз.
  • Бериллиевые бронзы, содержащие 1,8-2,3% бериллия, отличаются твердостью после закалки и высокой упругостью. Их применяют для изготовления пружин и пружинящих изделий.
  • Кадмиевые бронзы – сплавы меди с небольшим количества кадмия (до1%) – используют при производстве троллейных проводов, для изготовления арматуры водопроводных и газовых линий и в машиностроении.

Припои – сплавы цветных металлов, применяемые при пайке для получения монолитного паяного шва. Среди твердых припоев известен медносеребряный сплав (44,5-45,5% Ag; 29-31% Cu; остальное – цинк).

Бронза

Бронза
Бронза

Цветной металл для изготовки изделий разных типов начали использовать с древних времен. Данный факт подтверждается найденными материалами при археологических раскопках. Состав бронзы изначально был богат оловом.

Промышленностью выпускается различное количество разновидностей бронзы. Опытный мастер способен по цвету металла определить его предназначение. Однако не каждому под силу определить точную марку бронзы, для этого используется маркировка. Способы производства бронзы подразделяются на литейные, когда происходит плавление и отлив и деформируемые.

Состав металла зависит от предназначения к использованию. Основным показателем является наличие бериллия. Повышенная концентрация элемента в сплаве, подвергнутая процедуре закаливания, может соперничать с высокопрочными сталями. Наличие в составе олова отнимает у металла гибкость и пластичность.

Производство бронзовых сплавов изменилось с древних времен фактически внедрением современного оборудования. Технология с использованием в качестве флюса в виде древесного угля используется до сих пор. Последовательность получения бронзы:

  • печь разогревается для требуемой температуры, после этого в нее устанавливается тигель;
  • после плавки металл может окислится, во избежание этого добавляют флюс в качестве древесного угля;
  • кислотным катализатором служит фосфорная медь, добавление происходит после полного прогрева сплава.
температура плавления бронзы
Плавка бронзы

Старинные изделия из бронзы подвержены естественным процессам – патинирование. Зеленоватый цвет с белым оттенком проявляется из-за образования пленки, обволакивающей изделие. Искусственные методы патинирования включают в себя методы с использованием серы и параллельным нагреванием до определенной температуры.

Латунь

Латунь
Латунь

Сплав на основе меди с добавлением цинка называется латунь. В некоторых ситуациях добавляется олово в меньших пропорциях. Джеймс Эмерсон в 1781 году решил запатентовать комбинацию. Содержание цинка в сплаве может варьироваться от 5 до 45%. Латуни различают в зависимости от предназначения и спецификации:

  • простые, состоящие из двух компонентов – меди и цинка. Маркировка таких сплавов обозначается буквой «Л», напрямую значащая содержание меди в сплаве в процентах;
  • многокомпонентные латуни – содержат множество других металлов в зависимости от назначения к использованию. Такие сплавы повышают эксплуатационные свойства изделий, обозначаются также буквой «Л», но с прибавлением цифр.

Физические свойства латуни относительно высокие, коррозийная стойкость на среднем уровне. Большинство сплавов не критично к пониженным температурам, возможно эксплуатировать металл в различных условиях.
Технологии получения латуни взаимодействует с процессами медной и цинковой промышленности, обработке вторичного сырья. Эффективным способом плавки является использование электропечи индукционного типа с магнитным отводом и регулировкой температуры. После получения однородной массы, она разливается в формы и подвергается процессам деформации.

Плавка латуни
Плавка латуни

Применение материала в различных отраслях, повышает на него спрос с каждым годом. Сплав применяется в суд строительстве и производстве боеприпасов, различных втулок, переходников, болтов, гаек и сантехнических материалов.

Соединения меди

Оксид меди (I) Cu2O3 и закись меди (I) Cu2O, как и другие соединения меди (I) менее устойчивы, чем соединения меди (II). Оксид меди (I), или закись меди Cu2O в природе встречается в виде минерала куприта. Кроме того, она может быть получена в виде осадка красного оксида меди (I) в результате нагревания раствора соли меди (II) и щелочи в присутствии сильного восстановителя.

Оксид меди (II), или окись меди, CuO – черное вещество, встречающееся в природе (например в виде минерала тенерита). Его получают прокаливанием гидроксокарбоната меди (II) (CuOH)2CO3 или нитрата меди (II) Cu(NO2)2. Оксид меди (II) хороший осислитель.

Гидроксид меди (II) Cu(OH)2 осаждается из растворов солей меди (II) при действии щелочей в виде голубой студенистой массы. Уже при слабом нагревании даже под водой он разлагается, превращаясь в черный оксид меди (II). Гидроксид меди (II) – очень слабое основание. Поэтому растворы солей меди (II) в большинстве случаев имеют кислую реакцию, а со слабыми кислотами медь образует основные соли.

Сульфат меди (II) CuSO4 в безводном состоянии представляет собой белый порошок, который при поглощении воды синеет. Поэтому он применяется для обнаружения следов влаги в органических жидкостях. Водный раствор сульфата меди имеет характерный сине-голубой цвет. Эта окраска свойственна гидратированным ионам [Cu(H2O)4]2+, поэтому такую же окраску имеют все разбавленные растворы солей меди (II), если только они не содердат каких-либо окрашенных анионов. Из водных растворов сульфат меди кристаллизуется с пятью молекулами воды, образуя прозрачные синие кристаллы медного купороса. Медный купорос применяется для электролитического покрытия металлов медью, для приготовления минеральных красок, а также в качестве исходного вещества при получении других соединений меди. В сельском хозяйстве разбавленный раствор медного купороса применяется для опрыскивания растений и протравливания зерна перед посевом, чтобы уничтожить споры вредных грибков.

Хлорид меди (II) CuCl2. 2H2O. Образует темно-зеленые кристаллы, легко растворимые в воде. Очень концентрированные растворы хлорида меди (II) имеют зеленый цвет, разбавленные – сине-голубой.

Нитрат меди (II) Cu(NO3)2.3H2O. Получается при растворении меди в азотной кислоте. При нагревании синие кристаллы нитрата меди сначала теряют воду, а затем легко разлагаются с выделением кислорода и бурого диоксида азота, переходя в оксид меди (II).

Гидроксокарбонат меди (II) (CuOH)2CO3. Встречается в природе в виде минерала малахита, имеющего красивый изумрудно-зеленый цвет. Искусственно приготовляется действием Na2CO3 на растворы солей меди (II). 2CuSO4 + 2Na2CO3 + H2O = (CuOH)2CO3v + 2Na2SO4 + CO2^ Применяется для получения хлорида меди (II), для приготовления синих и зеленых минеральных красок, а также в пиротехнике.

Ацетат меди (II) Cu (CH3COO)2.H2O. Получается обработкой металлической меди или оксида меди (II) уксусной кислотой. Обычно представляет собой смесь основных солей различного состава и цвета (зеленого и сине-зеленого). Под названием ярь-медянка применяется для приготовления масляной краски.

Комплексные соединения меди образуются в результате соединения двухзарядных ионов меди с молекулами аммиака. Из солей меди получают разноообразные минеральные краски. Все соли меди ядовиты. Поэтому, чтобы избежать образования медных солей, медную посуду покрывают изнутри слоем олова (лудят).

Соединения

Какова температура плавления меди и ее сплавов. Самостоятельное плавление меди
Медный купорос

В соединениях медь бывает двух степеней окисления: менее стабильную степень Cu+ и намного более стабильную Cu2+, которая даёт соли синего и сине-зелёного цвета. В необычных условиях можно получить соединения со степенью окисления +3 и даже +5. Последняя встречается в солях купраборанового аниона Cu(B11H11)23-, полученных в 1994 году.

Карбонат меди(II) имеет зелёную окраску, что является причиной позеленения элементов зданий, памятников и изделий из меди. Сульфат меди(II) при гидратации даёт синие кристаллы медного купороса CuSO4∙5H2O, используется как фунгицид. Также существует нестабильный сульфат меди(I) Существует два стабильных оксида меди — оксид меди(I) Cu2O и оксид меди(II) CuO. Оксиды меди используются для получения оксида иттрия бария меди (YBa2Cu3O7-δ), который является основой для получения сверхпроводников. Хлорид меди(I) — бесцветные кристаллы (в массе белый порошок) плотностью 4,11 г/см³. В сухом состоянии устойчив. В присутствии влаги легко окисляется кислородом воздуха, приобретая сине-зелёную окраску. Может быть синтезирован восстановлением хлорида меди(II) сульфитом натрия в водном растворе.

Особенности плавления некоторых металлов

Для того, чтобы расплавить металл в домашних условиях этот элемент необходимо поместить в небольшую чашечку или тигель. Чашка с материалом вставляется в печь. Затем начинается его плавка. Чтобы расплавить драгоценные элементы их помещают в ампулу из стекла. Для того, чтобы сделать сплав из нескольких компонентов следуют такой инструкции:

  • Вначале в чашечку для плавления кладется тугоплавкий элемент – медь или железо.
  • Затем кладется более легкоплавкий компонент – олово, алюминий.

Сталь является тугоплавким материалом. Ее температура плавления составляет тысячу четыреста градусов по Цельсию. Поэтому, чтобы расплавить сталь в домашних условиях надо следовать следующей инструкции:

  • Для плавки стали в домашних условиях ввести дополнительные регенераторы. Если печь работает на электричестве, то используется электроэнергия.
  • При индукционном нагреве добавляются шлаки. Они увеличивают быстроту плавки.
  • Постоянно вести наблюдение за показаниями приборов. Если необходимо, то понижать температуру плавления, переходя на более умеренный режим.
  • Всегда верно определять готова ли сталь к работе или к плавлению. Выдерживать все вышеперечисленные шаги. Только тогда металл на выходе будет качественного изготовления.

Для плавки железа в домашних условиях печь необходимо заранее прогреть. Вначале помещается крупный кусок, а потом мелкие. Железо необходимо вовремя переворачивать. А правильно расплавленный металл будет иметь шаровидную форму.

Если вы собираетесь сделать бронзу, то вначале необходимо поместить в лунку для плавления медь. Так как этот компонент более тугоплавкий. Когда медь расплавилась добавляется олово.

Ни в коем случае нельзя плавить такие элементы, как кадмий, свинец или цинк. При выгорании они образуют ядовитый дым желтоватого цвета.

А при плавке алюминия, олово или железа необходимо соблюдать неспешность. Расклепывать медленно и делать это надо небольшим молотком. Часто нагревайте материал до покраснения и остужайте в холодной воде. Только тогда вы получите идеальный сплав на выходе.

Как расплавить латунь?

Данный материал является многокомпонентным сплавом меди.

Инструкция по плавке материала

Чтобы избежать различных травм, а также повреждений материалов, необходимо действовать строго по указанной инструкции. Еще один важный момент — обеспечение в рабочем помещении вентиляции. Второе, что нужно сделать, — измельчить сам материал, что позволит ему плавиться быстрее. Как только это сделано, можно приступать к работе:

  • сложить весь материал в тигель, поместить в печь;
  • используя элемент, регулирующий температуру, установить нужный градус плавления (от 880 до 950 градусов); включить печь;
  • пока металл плавится, следите за ним через окошко в двери печи;
  • как только необходимое состояние латуни будет достигнуто, можно открыть дверцу;
  • при помощи крюка из железной проволоки удалить с поверхности окисную пленку;
  • используя щипцы и соблюдая все меры предосторожности, ухватитесь ими за тигель;
  • осторожно вытащите его из печи и приступите к разливанию содержимого по подготовленным заранее формам.

Плавление сплавов на основе меди

На практике медь используют не только в качестве чистого вещества, но и в виде различных сплавов. Примеры таких сплавов — бронза, латунь, мельхиор и другие. Так как сплавы являются многокомпонентными веществами, то их плавление происходит по другому принципу. Рассмотрим примерный алгоритм плавления медных сплавов на примере латуни:

  1. При температуре до 100 градусов Цельсия кристаллическая решетка является устойчивой и однородной. В случае удара происходит деформация материала. На поверхности материала имеется тонкая оксидная пленка, которая защищает изделие от воздействия воды, атмосферного воздуха, химически активных веществ.
  2. При нагреве латуни до 100 градусов внешняя пленка постепенно плавится, что делает вещество менее прочным. Также из-за повреждения защитной пленки увеличивается химическая активность материала (то есть он начинает более активно вступать в реакцию с водой, воздухом, химическими веществами). Кристаллическая решетка устойчива к небольшому нагреву, поэтому материал сохраняет свою форму.
  3. Температура 880 градусов — это точка солидуса. При достижении этой температуры начинается расплавление самых легкоплавких элементов, входящих в состав сплава. Это приводит к частичному переходу твердого вещества в жидкость. На химическом уровне при достижении точки солидуса происходит частичное разрушение кристаллической решетки вещества, однако у более тугоплавких фракций решетка сохраняется.
  4. Температура 950 градусов — это точка ликвидуса. При достижении этой отметки плавятся самые тугоплавкие фракции, которые сохраняют свою твердость при более низких температурах. В результате на химическом уровне материал полностью становится жидким, поскольку полностью разрушается кристаллическая решетка у всех компонентов, входящих в состав латуни.

график плавления меди

Советы к инструкции по плавлению меди

Следующие подсказки смогут несколько упростить процесс работы, если вдруг у вас под рукой не оказалось чего-то из необходимых инструментов:

  • В том случае, если муфельная печь отсутствует, можно использовать доменную, если таковая имеется. Стоит отметить, что ее также можно взять в аренду. Но перед тем как расплавить медь, убедитесь, что устройство способно нагреваться до 1083 градусов. А также удостоверьтесь, что оно выдержит работу при данной температуре.
  • Если все же пришлось использовать доменную печь, узнайте подробнее о том, как правильно работать с перепадами температур. В противном случае металл может начать кипеть.
  • Форма для изготовления изделия из меди должна иметь более высокую температуру плавления, чем сам металл.

Также вместо печей для обработки латуни можно использовать другие подручные инструменты. Для нагрева можно применять горелку или паяльную лампу. Чтобы обрабатывать ею металл, необходимо расположить устройство в устойчивой позиции пламенем вверх. Над ним разместить подставку из железной проволоки.

Поверх всего установить тигель со сложенной в него латунью. Далее необходимо включить нагревательный инструмент, установив такую мощность огня, чтобы он мог полностью охватывать дно сосуда. Из-за того что плавление будет происходить на открытом воздухе, латунь станет окисляться.

Чтобы уменьшить этот эффект, засыпьте поверхность сосуда плотным слоем древесного угля.

Перед тем как принимать народные средства при лечении алкоголизма, очень важно проконсультироваться с лечащим врачом того человека, к которому будут применены эти вещества.

Важное замечание

Стоит отметить, что в Сети гуляет множество историй о том, как люди плавили этот металл не со специальным оборудованием, а на костре, в консервной банке.

Как правило, такие авторы даже понятия не имеют о том, какая температура плавления меди на самом деле — 1083 градуса.

Суть сказанного в том, что стоит быть готовым к достаточно большим финансовым тратам. Многие инструменты обходятся не слишком дешево.

Плюс, перед тем как расплавить медь, стоит позаботиться о средствах безопасности.

На заметку

Решив растопить медь, учтите, что горн при необходимости можно заменить паяльной лампой либо автогеном. Тигли должны быть сделаны из керамики либо глины. Муфельная печь предоставляет возможность получать температуру в 1083 °C – для меди, 930-1140 °C – для бронзы, 880-950 °C – для латуни.

В целях увеличения температуры надо вдувать в горн больше воздуха. Для этих целей подходят простой пылесос, который работает на выдувание, и компрессор. Важно, чтобы шланг пылесоса имел металлический наконечник.

Тонкую струю воздуха удастся получить в том случае, если отверстие наконечника будет заужено.

Как расплавить медь в домашних условиях: температура, сосуд

Не рекомендуется растапливать старинную медь, происхождение которой вам не известно. Не исключено, что этот материал имеет в своем составе очень много мышьяка, что чревато риском отравления.

Действуйте правильно, и у вас непременно получится расплавить медь в домашних условиях!

Плавка меди в домашних условиях

Переплавка меди в домашних условиях

Медь — достаточно пластичный материал, обладающий золотисто-розовым цветом или же чисто розовым, если отсутствует оксидная пленка. Он крайне популярен. Достаточно часто можно встретить изделия из меди, различные сувениры, многие элементы декора, красивые и необычные предметы. Также встречаются некоторые полезные в хозяйстве детали. Этот материал в почете у многих мастеров. Наиболее распространено использование чистой красной меди, бронзы и латуни (ее сплавов).

Но что делать, если вы не являетесь профессиональным мастером и в то же время решили сделать что-нибудь из этого метала? У вас возникает резонный вопрос: «Как расплавить медь в домашних условиях?»

При какой температуре плавится медь

Плавления происходит, когда из твердого состояния металл переходит в жидкое. Каждый элемент имеет собственную температуру плавления. Многое зависит от примесей в металле. Обычная температура плавления меди — 1083 ° C. Когда добавляется олово, температура снижается до 930- 1140 ° C. Температура плавления зависит здесь от содержания в сплаве олова. В сплаве купрума с цинком плавление происходит при 900- 1050 ° C .

Температура плавления сплавов
При нагреве любого металла разрушается его кристаллическая решетка. По мере нагревания повышается температура плавления, но затем выравнивается по достижении определенного предела температуры. В этот момент и плавится металла. Полностью расплавляется, и температура повышается снова.

Когда металл охлаждается, температура снижается, в определенный момент остается на прежнем уровне, пока металл не затвердеет полностью. После полного затвердевания температура снижается опять. Это демонстрирует фазовая диаграмма, где отображен температурный процесс с начала плавления до затвердения. При нагревании разогретая медь при 2560 ° C начинает закипать. Кипение подобно кипению жидких веществ, когда выделяется газ и появляются пузырьки на поверхности. В момент кипения при максимально больших температурах начинается выделение углерода, образующегося при окислении.

Плавление в домашних условиях

Благодаря низкой температуре плавления древние люди могли расплавлять купрум на костре и использовать металл для изготовления различных изделий.

Для расплавки меди в домашних условиях понадобится:

  • Плавление меди в домашних словияхдревесный уголь;
  • тигель и специальные щипцы для него;
  • муфельная печь;
  • бытовой пылесос;
  • горн;
  • стальной крюк;
  • форма для плавления.

Процесс течет поэтапно, металл помещается в тигель, а затем размещается в муфельной печи. Выставляется нужная температура, а наблюдение за процессом осуществляется через стеклянное оконце. В процессе в емкости с Cu появится окисная пленка, которую нужно устранить — открыть окошко и отодвинуть в сторону стальным крюком.

При отсутствии муфельной печи расплавить медь можно автогеном. Плавление пойдет, если ест нормальный доступ воздуха. Паяльной лампой расплавляется латунь и легкоплавкая бронза. Пламя должно охватить весь тигель.

Как плавить медьЕсли под рукой ничего из перечисленных средств нет, можно использовать горн, установленный на слой древесного угля. Для повышения Т можно использовать пылесос, включенный в режим выдувания, но шланг должен иметь металлический наконечник, хорошо, если с зауженным концом, так струя воздуха будет тоньше.

Температура плавления бронзы и латуни, как температура плавления меди и алюминия — невысоки.

Сегодня в промышленных условиях в чистом виде Cu не используется. В ее составе содержится много примесей: никель, железо, мышьяк, сурьма, другие элементы. Качество продукта определяется наличием содержания в процентах примесей в сплаве (не более 1%). Важные показатели — тепло- и электропроводность. Благодаря пластичности, малой Т плавления и гибкости медь широко используется во многих отраслях промышленности.

Как расплавить в домашних условиях

Некоторые люди имеют хобби, связанные с литьем из металлов. Те же, кто только встает на этот увлекательный путь, часто интересуются, как расплавить медь в домашних условиях. Для этого понадобится:

  • форма для плавления;
  • щипцы;
  • сырье для плавки;
  • газовая горелка высокого давления – лучшее решение, так как горн есть не в каждом хозяйстве;
  • защитное снаряжение (очки, толстые перчатки).

Безопасная работа с металлом в домашних условиях: температура плавления меди и других сплавов
Если у вас есть все необходимое, можно начинать плавку в домашних условиях. Пошаговая инструкция довольно проста:

  • Металл по возможности измельчить – можно при помощи напильника превратить в опилки. Это позволит быстрее расплавить его.
  • Поместить в форму для плавления – она должна быть из материала с высокой температурой плавления.
  • Надеть защитное снаряжение, зажечь горелку и направить струю пламени на сырье.
  • Когда медь расплавится, захватить форму для плавления щипцами и вылить жидкий металл в подготовленную форму.

Как видите, все довольно просто. Впрочем, этот метод подойдет не для всех сплавов. Например, температура плавления и стали слишком высока – обычная горелка здесь не подойдет. Это касается также сплава меди и железа.

Сфера применения весьма обширна. Приведем лишь несколько примеров:

  • передача электричества – низкое сопротивление делает этот металл крайне востребованным;
  • приборостроение – устойчивость перед водой, в том числе морской, очень важна во многих сферах;
  • при пайке – также благодаря хорошей электропроводности;
  • водопроводные трубы – она прекрасно проводит тепло;
  • радиаторы охлаждения – теплопроводность металла позволяет не только согревать помещения, но и охлаждать оборудования.

Значение плотности меди

Плотность — это отношение массы к объему. Выражается она в килограммах на кубический метр всего объема. В виду неоднородности состава, значение плотности может меняться в зависимости процентного содержания примесей. Поскольку существуют разные марки медных прокатов с разным содержанием компонентов, то и значение плотности у них будет разное. Плотность меди можно найти в специализированных технических таблицах, которая равна 8,93х103 кг/м3. Это справочная величина. В этих же таблицах показан удельный вес меди, который равен 8,93 г/см3. Таким совпадением значений плотности и его весовых показателей характеризуются не все металлы.

Основные показатели меди

Не секрет, что от плотности напрямую зависит конечная масса изготовленного изделия. Однако для расчетов гораздо правильнее использовать удельный вес. Этот показатель очень важен для производства изделий из меди или любых других металлов, но применим больше к сплавам. Он выражается отношением массы меди к объему всего сплава.

Расчет удельного веса

В настоящее время учеными разработано огромное количество способов, помогающих найти характеристики удельного веса меди, которые позволяют даже без обращения к специализированным таблицам вычислять этот немаловажный показатель. Зная его, можно с легкостью подобрать необходимые материалы, благодаря которым в конечном итоге можно получить нужную деталь с требуемыми параметрам. Это делается еще на стадии подготовки, когда планируется создать необходимую деталь из меди или ее содержащих сплавов.

Как уже говорилось выше, удельный вес меди можно подсмотреть в специализированном справочнике, но если под рукой такого нет, то его можно рассчитать по следующей формуле: вес делим на объем и получаем необходимую нам величину. Общими словами такое соотношение можно выразить как общее весовое значение к общему значению объема всего изделия.

Не стоит путать его с понятием плотности, так как он характеризует металл по-другому, хоть и имеет одинаковые значения показателей.

Рассмотрим, как можно вычислить удельный вес, если известна масса и объем медного изделия.

Например, имеем чистый медный лист толщиной 5 мм, шириной 2 м и длиной 1 м. Для начала посчитаем его объем: 5 мм * 1000 мм (1 м = 1000 мм) * 2000 мм, что составляет 10 000 000 мм3 или 10 000 см3. Для удобства расчетов будем считать, что масса листа составляет 89 кг 300 грамм или 89300 грамм. Делим рассчитанный результат на объем и получаем 8,93 г/см3. Зная этот показатель, мы всегда с легкостью можем вычислить весовое содержание в меди того или иного сплава. Это удобно, например, для обработки металла.

Расчет веса с использованием значений удельного веса

Не будем уходить далеко и воспользуемся примером, описанным выше. Вычислим общее содержание меди в 25 листах. Поменяем условие и будем считать, что листы изготовлены из медного сплава. Таким образом, берем удельный вес меди из таблицы и он равен 8.93 г/см3. Толщина листа 5 мм, площадь (1000 мм * 2000 мм) составляет 2 000 000 мм, соответственно объем будет равняться 10 000 000 мм3 или 10 000 см3. Теперь умножаем удельный вес на объем и получаем 89 кг и 300 гр. Мы вычислили общий объем меди, который содержится в этих листах без учета веса самих примесей, то есть общее весовое значение может быть больше.

Теперь умножаем рассчитанный результат на 25 листов и получаем 2 235 кг. Такие расчеты уместно использовать при обработке медных деталей, так как позволяют узнать, сколько меди всего содержится в изначальных объектах. Аналогичным образом можно рассчитать медные прутки. Площадь сечения провода умножается на его длину, где получим объем прутка, а далее по аналогии с вышеописанным примером.

Нахождение в природе

Свое латинское название Cuprum металл получил от названия острова Кипр, где его научились добывать в третьем тысячелетии до н. э. В системе Менделеева Сu получил 29 номер, а расположен в 11-й группе четвертого периода.

В земной коре элемент на 23-м месте по распространению и встречается чаще в виде сульфидных руд. Наиболее распространены медный блеск и колчедан. Сегодня медь из руды добывается несколькими способами, но любая технологий подразумевает поэтапный подход для достижения результата.

  • Условия плавления меди
    На заре развития цивилизации люди уже получали и использовали медь и ее сплавы.
  • В то время добывалась не сульфидная, а малахитовая руда, которой не требовался предварительный обжиг.
  • Смесь руды и углей помещали в глиняный сосуд, который опускался в небольшую яму.
  • Смесь поджигалась, а угарный газ помогал малахиту восстановиться до состояния свободного Cu.
  • В природе есть самородная медь, а богатейшие месторождения находятся в Чили.
  • Сульфиды меди нередко образуются в среднетемпературных геотермальных жилах.
  • Часто месторождения имеют вид осадочных пород.
  • Медяные песчаники и сланцы встречаются в Казахстане и Читинской области.

Допустимая температура нагрева кабеля

Под термином «допустимая температура нагрева кабеля»чаще всего понимается параметр, определяющий температурный режим эксплуатации кабеля, при котором изоляция сохраняет свою долговечность и практические качества. Однако при выборе кабеля стоит использовать более широкий подход, то есть учесть также температуру нагрева жил. В первом случае подразумевается температура окружающей среды, во втором – нагрев самого кабеля, вызванный электрическим сопротивлением токоведущих жил.

Допустимая температура нагрева изоляции кабеля

При чрезмерном нагреве или охлаждении изоляция может начать деградировать тем или иным образом. Это, в свою очередь, может привести к повреждению кабеля, а также подключённых к нему приборов и механизмов. Как следствие, допустимая температура нагрева проводов и кабелей зависит в первую очередь от материала изоляции. «Обычные» кабели с пластмассовой (ПВХ пластикат, полиэтилен, полимеры), бумажной, резиновой изоляцией на эксплуатацию в температурных условиях от -50 до +50 градусов (здесь и далее приведены значения в градусах по шкале Цельсия). При превышении этого значения материал оболочки и изоляции начинает деградировать до расплавления. Сверхохлаждение, в свою очередь, приводит к механическому разрушению изоляции – появлению трещин, изломов и других дефектов. К примеру, допустимая температура нагрева кабеля ВВГнг в стандартном исполнении во время эксплуатации — +50°C, минимальная — -50°C, а у кабеля, в конструкции которого используется ПВХ пластикат повышенной холодостойкости может выдерживать температуру до -60°C включительно. Если планируется эксплуатировать кабель в более экстремальных температурных условиях, целесообразно рассмотреть специализированные модели с изоляцией из иных материалов – фторопласт, силикон и других. Кроме того, при эксплуатации в экстремально холодных условиях подойдут холодостойкие исполнения.

Допустимая температура нагрева изоляции жил кабеля

Допустимая температура нагрева жил кабеля также зависит от материала изоляции, а в некоторых случаях – от рабочего напряжения. Длительно допустимая температура нагрева изоляции жил кабелей в зависимости от типа изоляции составляет: • бумажная: ◦ до 3 кВ включительно – 80°C; ◦ 6 кВ – 65°C; ◦ 10 кВ – 60°C; ◦ 20-35 кВ – 50°C. • бумажная обеднённо-пропитанная: ◦ 1 кВ – 80°C; ◦ 6 кВ –75°C. • резиновая – 65°C; • сшитый полиэтилен (СПЭ) и этиленпропиленовая резина (ЭПР) — 90°C; • ПВХ пластикат и полимерная композиция – 70°C; • маслонаполненные – 70-80°C в зависимости от типа прокладки.

Для всех типов изоляции допустимо кратковременное повышение температуры в аварийном или пусковом режиме (перегрузки). Допустимые значения температур в зависимости от типа изоляции составляют: • бумажная обеднённо-пропитанная – 95°C, но не более 10% от эксплуатационного времени; • резиновая – 110°C , но только при пусковом режиме; • ПВХ изоляция и полимерная композиция — +80°C в режиме перегрузки; • СПЭ и ЭПР — +130°C в режиме перегрузки (в аварийном режиме); • маслонаполненные — 80°C, при этом продолжительность непрерывной работы в аварийном режиме должна быть не более 100 часов. Максимальный период работы в аварийном режиме – не выше 500 часов в год. Интервал между перегрузками не должен быть менее 10 суток. Эксплуатации кабеля с бумажной изоляцией при напряжении 20 или 35 кВт в аварийном режиме не допускается. Эксплуатация кабеля с бумажной изоляцией при напряжении до 10 кВ включительно в аварийном режиме разрешается в течение не более 5 суток с учётом коэффициентов допустимой перегрузки.

Что изменилось со временем

Конечно, современные медные изделия не идут ни в какое сравнение с теми, которые изготавливались пять тысячелетий назад. Вместо грубых медных ножей, топоров и наконечников для стрел и копий сегодня выпускаются сложнейшие детали для электроники. А ведь все свойства металла остались неизменными. При какой температуре плавится медь сегодня, при такой плавилась и тысячи лет назад. Зато значительно улучшились технологии.

Например, раньше чистый (сравнительно чистый, конечно) металл из руды добывали самыми примитивными способами. Например, в глиняный кувшин складывали руду и уголь. Сосуд устанавливали в яму, смесь поджигали, а яму засыпали. При горении угля выделялся угарный газ. Контактируя с рудой, он запускал реакцию, в результате которой выделялся металл и небольшое количество воды.

Сегодня, как уже говорилось выше, для удаления примесей из руды применяют разные методы. Используя специальный график плавления меди и различные методы обработки, специалисты могут получить практически абсолютно чистый металл. Рассмотрим для примера гидрометаллургический как самый простой для понимания.

Медная руда заливается серной кислотой. Медь как сравнительно активный металл вступает в реакцию, превращаясь в сульфат меди. Железо при контакте с ним вытесняет медь. В результате реакции получается сульфат железа и медь.

Применение медного литья

Медное литье применяется для изготовления широкого спектра изделий. В ювелирном деле легендарный металл чаще используют в составе сплавов. В небольших количествах ее добавляют в золотые изделия для повышения их прочности и стойкости к истиранию. Бронза, представляющая собой сплав меди с оловом, используется для создания авторских подвесок, цепочек, колец и сережек.

Ювелирные украшения из меди

Литье из меди применяется также для изготовления рыболовных блесен уникальной формы. Еще одна сфера применения — создание авторских масштабных моделей техники — кораблей, автомобилей, танков, самолетов и пр. Здесь кроме бронзы используется латунь — сплав с цинком.

Латунь и бронза применяются также для отливки элементов декора помещений, накладок и авторских дверных ручек. Здесь, кроме конструкционных достоинств — прочности, долговечности и внешнего вида, применяются и бактерицидные свойства меди и ее сплавов.

Как определяется плотность

Плотность меди, как и плотность любого другого вещества, является справочной величиной. Она выражается соотношением массы к объему. Самостоятельно вычислить этот показатель весьма сложно, так как без специальных приборов состав проверить невозможно.

Пример расчета плотности меди

Выражается показатель в килограммах на кубический метр или в граммах на кубический сантиметр. Показатель плотности более полезен для производителей, которые на основе имеющихся данных могут скомпоновать ту или иную деталь с требуемыми свойствами и характеристиками.

Источники
  • https://NpfGeoProm.ru/materialy/grafik-plavleniya-i-kristallizacii-medi.html
  • https://stroimdom44.ru/kak-rasplavit-med-v-domashnix-usloviyax-texnologiya-i-poshagovyj-process/
  • https://kamniinfo.ru/metally/kakova-temperatura-plavleniya-medi-i-ee-splavov-samostoyatelnoe-plavlenie-medi.html
  • https://martensit.ru/med/temperatura-plavleniya-medi/
  • https://tutsvarka.ru/vidy/kak-rasplavit-med-v-domashnih-usloviyah-tehnologiya-i-poshagovyj-protsess
  • https://tokar.guru/metally/temperatura-plavleniya/pri-kakoy-temperature-plavitsya-med-plavlenie.html
  • https://met-lit.ru/cvetmet/temperatura-medi.html
  • https://intehstroy-spb.ru/spravochnik/kak-rasplavit-med-i-ee-splavy-v-domashnih-usloviyah.html
  • https://co-vally.ru/cvetnye-metally/t-plavleniya-medi.html
Оцените статью
tutsvarka.ru